Differential requirements for Smad4 in TGFbeta-dependent patterning of the early mouse embryo.

نویسندگان

  • Gerald C Chu
  • N Ray Dunn
  • Dorian C Anderson
  • Leif Oxburgh
  • Elizabeth J Robertson
چکیده

Genetic and biochemical data have identified Smad4 as a key intracellular effector of the transforming growth factor beta (TGFbeta superfamily of secreted ligands. In mouse, Smad4-null embryos do not gastrulate, a phenotype consistent with loss of other TGFbeta-related signaling components. Chimeric analysis reveals a primary requirement for Smad4 in the extra-embryonic lineages; however, within the embryo proper, characterization of the specific roles of Smad4 during gastrulation and lineage specification remains limited. We have employed a Smad4 conditional allele to specifically inactivate the Smad4 gene in the early mouse epiblast. Loss of Smad4 in this tissue results in a profound failure to pattern derivatives of the anterior primitive streak, such as prechordal plate, node, notochord and definitive endoderm. In contrast to these focal defects, many well-characterized TGFbeta- and Bmp-regulated processes involved in mesoderm formation and patterning are surprisingly unaffected. Mutant embryos form abundant extra-embryonic mesoderm, including allantois, a rudimentary heart and middle primitive streak derivatives such as somites and lateral plate mesoderm. Thus, loss of Smad4 in the epiblast results not in global developmental abnormalities but instead in restricted patterning defects. These results suggest that Smad4 potentiates a subset of TGFbeta-related signals during early embryonic development, but is dispensable for others.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo.

Mutations in the SMAD4/DPC4 tumor suppressor gene, a key signal transducer in most TGFbeta-related pathways, are involved in 50% of pancreatic cancers. Homozygous Smad4 mutant mice die before day 7.5 of embryogenesis. Mutant embryos have reduced size, fail to gastrulate or express a mesodermal marker, and show abnormal visceral endoderm development. Growth retardation of the Smad4-deficient emb...

متن کامل

Time Course of Degradation and Deadenylation of Maternal c-mos and Cyclin A2 mRNA during Early Development of One-Cell Embryo in Mouse

Early in the development of many animals, before transcription begins, any change in the pattern of protein synthesis is attributed to a change in the translational activity or stability of mRNA in the egg and early embryo. As a result, translational control is critical for a variety of developmental decisions, including oocyte maturation and initiation of preimplantation development. In this s...

متن کامل

Smad4 is required predominantly in the developmental processes dependent on the BMP branch of the TGF-β signaling system in the embryonic mouse retina.

PURPOSE The present study was aimed at defining developmental roles of Smad4, a key mediator of the TGF-β superfamily signaling system, in the embryonic mouse retina. METHODS Using a Cre/loxP-mediated conditional gene targeting approach, Smad4 gene function was deleted from the embryonic mouse retina. Mutant phenotypes were morphologically and molecularly examined. RESULTS Loss of Smad4 in ...

متن کامل

Combinatorial activities of Smad2 and Smad3 regulate mesoderm formation and patterning in the mouse embryo.

TGFbeta/activin/Nodal receptors activate both Smad2 and Smad3 intracellular effector proteins. The functional activities of these closely related molecules have been extensively studied in cell lines. We show both are expressed in the early mouse embryo from the blastocyst stage onwards and mediate Foxh1-dependent activation of the Nodal autoregulatory enhancer in vitro. Genetic manipulation of...

متن کامل

Dominant-negative Smad2 mutants inhibit activin/Vg1 signaling and disrupt axis formation in Xenopus.

Smads are central mediators of signal transduction for the TGFbeta superfamily. However, the precise functions of Smad-mediated signaling pathways in early development are unclear. Here we demonstrate a requirement for Smad2 signaling in dorsoanterior axis formation during Xenopus development. Using two point mutations of Smad2 previously identified in colorectal carcinomas, we show that Smad2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 131 15  شماره 

صفحات  -

تاریخ انتشار 2004